CHAPTER 6 Air-Sea Interaction

Fig. 6.11

Overview

- Atmosphere and ocean one interdependent system
- Solar energy creates winds
- Winds drive surface ocean currents and waves
- Examples of interactions:
 - El Niño-Southern Oscillation
 - Greenhouse effect

Seasons

- Earth's axis of rotation tilted with respect to ecliptic
- Tilt responsible for seasons
 - Vernal (spring) equinox
 - Summer solstice
 - Autumnal equinox
 - Winter solstice
- Seasonal changes and day/night cause unequal solar heating of Earth's surface

Seasons

Fig. 6-1

Uneven solar heating

- Angle of incidence of solar rays per area
 - Equatorial regions more heat
 - Polar regions less heat
- Thickness of atmosphere
- Albedo
- Day/night
- Seasons

Insert Fig. 6-3

Oceanic heat flow

- High latitudes more heat lost than gained
 - Due to albedo of ice and high incidence of solar rays
- Low latitudes more heat gained than lost

Physical properties of atmosphere

- Atmosphere mostly nitrogen (N₂) and oxygen (O₂)
- Temperature profile of lower atmosphere
 - Troposphere temperature cools with increasing altitude

Fig. 6.4

Physical properties of atmosphere

- Warm air, less dense (rises)
- Cool air, more dense (sinks)
- Moist air, less dense (rises)
- Dry air, more dense (sinks)

Movements in atmosphere

Fig. 6.6

- Air (wind) always moves from regions of high pressure to low
- Cool dense air, higher surface pressure
- Warm less dense air, lower surface pressure

Movements in air

Non-rotating Earth

- Air (wind)
 always moves
 from regions of
 high pressure
 to low
- Convection or circulation cell

Fig. 6.7

Movements in air on a rotating Earth

- Coriolis effect causes deflection in moving body
- Due to Earth's rotation to east
- Most pronounced on objects that move long distances across latitudes
- Deflection to right in Northern Hemisphere
- Deflection to left in Southern Hemisphere
- Maximum Coriolis effect at poles
- No Coriolis effect at equator

Movements in air on a rotating Earth

Global atmospheric circulation

- Circulation cells as air changes density due to:
 - Changes in air temperature
 - Changes in water vapor content
- Circulation cells
 - Hadley cells (0° to 30° N and S)
 - Ferrel cells (30° to 60° N and S)
 - Polar cells (60° to 90° N and S)

Global atmospheric circulation

- High pressure zones
 - Subtropical highs
 - Polar highs
 - Clear skies
- Low pressure zones
 - Equatorial low
 - Subpolar lows
 - Overcast skies with lots of precipitation

Copyright © 2008 Pearson Prentice Hall, Inc.

Global wind belts

- Trade winds
 - Northeast trades in Northern Hemisphere
 - Southeast trades in Southern Hemisphere
- Prevailing westerlies
- Polar easterlies
- Boundaries between wind belts
- Doldrums or Intertropical Convergence Zone (ITCZ)
- Horse latitudes
- Polar fronts

Modifications to idealized 3-cell model of atmospheric circulation

- More complex in nature due to
 - Seasonal changes
 - Distribution of continents and ocean
 - Differences in heat capacity between continents and ocean
 - Monsoon winds

Actual pressure zones and winds

Copyright © 2008 Pearson Prentice Hall, Inc.

Ocean weather and climate patterns

- Weather conditions of atmosphere at particular time and place
- Climate long-term average of weather
- Northern hemisphere winds move counterclockwise (cyclonic) around a low pressure region
- Southern hemisphere winds move clockwise (anticyclonic) around a low pressure region

Coastal winds

- Solar heating
- Different heat capacities of land and water

Sea breeze

From ocean to land

Land breeze

From land to ocean

Fig. 6.13